高灵敏压力传感器过载保护与结构设计
通常压力传感器的应变电阻是在单晶硅片上扩散或注入杂质的方式实现,为了改善温度特性,后来也采用了多晶硅薄膜,但普通多晶硅薄膜的应变因子较小,不利于提高灵敏度。最新研究结果表明,多晶硅纳米薄膜具有显著的隧道压阻效应,表现出比常规多晶硅薄膜更优越的压阻特性,重掺杂条件下其应变因子仍可达到34,具有负应变因子温度系数,数值小于1 × 10 - 3 /℃,电阻温度系数可小于2 × 10 - 4 /℃。因此,在牺牲层结构压力传感器上,采用多晶硅纳米薄膜作应变电阻,可以提高灵敏度,扩大工作温度范围,降低温度漂移。然而,牺牲层结构非常薄,如何提高传感器的过载能力显得尤为重要。对此,本文在保证传感器满量程范围内线性响应的前提下,调整牺牲层厚度,通过弹性膜片与衬底的适当接触来有效提高传感器的过载能力。
1 牺牲层结构压力传感器
牺牲层结构压力传感器是指弹性膜片利用牺牲层技术制作而成的压力传感器,结构示意图如图1所示,其中AB( A''B'') 为膜片宽度a,AA''( BB'') 为膜片长度b,H1为膜片厚度,H2为牺牲层厚度。
在表面微加工中,由淀积到衬底和牺牲层上的薄膜作为结构层,对微小结构的尺寸更易控制,器件的尺寸得以减小。然而,这些结构层的机械性能高度依赖于淀积和随后的加工过程,相对低的淀积速率虽然限制了所制作器件的厚度,但是由于结构层厚度低,所以能制作出量程更小、灵敏度更高的压力传感器。
本文以量程0.1 MPa 的牺牲层结构压力传感器为例,设计出电压源E =5 V 时,满量程输出为60 mV的压力芯片。为了满足灵敏度的设计要求,改变弹性膜片的宽度、长度、厚度和牺牲层厚度对应力分布进行模拟仿真( 模拟仿真时多晶硅杨氏模量EX = 1.7 ×1011 N/m2,泊松比PRXY =0.24,多晶硅纳米薄膜应变因子G =30) ,经过优化后,得到满足设计要求的弹性膜片尺寸: 长度a = 300 μm、宽度b = 150 μm、膜片厚度H1 =3 μm、牺牲层厚度H2 =3.5 μm。
高灵敏压力传感器过载保护与结构设计
针对所设计的压力传感器芯片,进行了投片实验,其主要工艺步骤如下: ①在硅衬底上,采用PECVD 方法淀积一层二氧化硅作为牺牲层; ②采用PECVD 方法淀积一层二氧化硅,经过光刻形成腐蚀通道;③在牺牲层上采用LPCVD 方法淀积一层多晶硅作为结构层,经过光刻形成腐蚀孔; ④用氢氟酸溶液释放牺牲层,再采用LPCVD 方法淀积一层多晶硅,从而使腔体密封; ⑤热氧化一层二氧化硅作为绝缘层,在其上采用LPCVD 方法淀积多晶硅纳米薄膜作为电阻层;⑥采用PECVD 方法淀积一层二氧化硅作为钝化层,并利用离子注入方法对电阻层进行局部掺杂,形成应变电阻; ⑦利用光刻技术对钝化层进行光刻,从而形成引线孔。最后,蒸铝形成金属布线。
压力芯片照片
采用气体加压的方式对芯片样品进行了测试。测试温度条件为室温,激励源为1 mA 恒流源,其输出特性测试结果如图3 所示。
压力芯片输出特性测试结果
随着压力载荷的增加,输出电压并未随之线性增加,其增加的程度逐渐减小,而且满量程输出未达到设计要求。经过分析,出现图3 所示的现象应该是由于芯片的密封腔体有泄漏引起的。虽然有泄漏,但芯片仍然表现出了压力敏感特性,而且利用多晶硅纳米膜研制的硅杯结构压力传感器能够满足设计要求。因此,改善工艺解决泄漏问题后,牺牲层结构多晶硅纳米膜压力传感器的性能应该能满足设计要求。
高灵敏压力传感器过载保护与结构设计
本文地址:http://www.dgzhonghao.com/news/729.html
本文来源:东莞市中昊自动化科技有限公司